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ABSTRACT

RESUME

The diffusive transport of ions in two classes of
porous media was studied as a function of fluid satura-
tion and wetting propertics. A lattice Boltzmann method
was used to model phase separation of a binary mixture,
including wetting cffects, in porous media. Diftusive
transport is then evaluated in cach separate phasc.

It 1s found that the degree of saturation of each phase
can strongly affect the transport of ions that are limited
to diffusing in either the wetting or non-wetting phasc.
At high saturations, good agreement is found between
our estimates of diffusivity and that predicted by the
semi-cmpirical Archic’s second law. At lower saturations
it is found that Archic’s second law breaks down as per-
colation ctfects become important.

1. INTRODUCTION

Moisture and diffusive transport in porous media play
an important role in a wide variety of processes of envi-
ronmental and technological concern, such as the degra-
dation of building materials (e.¢., mortar and concrete),
the spread of hazardous wastes in the ground, oil recov-
ery, and the containment of nuclear wastes [1]. For
example, the ingress of chloride 1ons in an aqueous phase
in concrete can lead to corrosion of steel reinforcement,
while the rate of diftusion of carbon dioxide in the com-
plementary air phase may determine the rate of carbona-
tion of the cementitious matrix. Clearly, the diffusive
transport of ions in building materials or in soils must
depend on the degree of saturation of the porous
medium. In this paper, results will be presented of a
numerical study concerning diffusive transport in model
porous media as a function of fluid saturation, taking into
account fluid wetting properties.  The location of cach
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Le transport d’ions par diffusion dans deux milieux
porenix différents est étudié en fonction de leurs saturation en

fluide et mouillabilité. Un maillage selon la méthode de

Boltzmann est utilisé pour modéliser la séparation de phase
du mélange binaire constituant le milicu poreux. Le modéle
prend en compte les effets de mouillabilité. Le transport par
diffusion est ensuite évalué dans chaque phase.

Il est observé que le degré de saturation de chaque phase
peut grandement aﬁ(’(t(’r le transport des ions pour lesquels la
diffusion est limitée a la phase mouillable o1t a la phase non
mouillable. Aux fortes saturations, nos estimations concer-
nant la diffusivité sont en accord avec celles prévues par la
seconde loi d’Archie laquelle est semi-empirigue. Aux faibles
saturations, la seconde loi d’Archie w’'est plus valable lorsque
les effets de percolation deviennent importants.

fluid phase in the pore space was obtained by nunmerically
simulating the phase separation of a fluid mixture by the
lattice Boltzmann method [2]. Upon completion of the
phasc separation process, cach fluid phase was identified
and the bulk clectrical conductivity assoctated with each
separate phase was determined, assuming that the mater-
1al making up the solid was not conductive. The diftusiv-
ity was then obtained by utilizing the Einstein relation [3]
which relates diffusivity to conductivity. Results arc
summarized on a relative diffusivity curve which
describes the diffusivity of ionic species, normalized to its
value at full saturation, as a function of the degree of satu-
ration of the porous medium. Tt is hoped that a careful
evaluation of simple but non-trivial model systems will
yield insight into the problems of diffusion in partially-
saturated building materials like concrete. Further such
information can be easily employed in computer models
which simulate the ingress of contaminants into building
materials and soils by diffusion,
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2. THEORY

The diftusion of a molecular species in a fluid is
described by the following cquation (in onc dimension):

dc D

o~ Prs (1

Here ¢ 1s the concentration of the molecular specices,
t is time, X is position, and Dy; 1s the free molecular dif-
fusivity in flud i

At length scales much larger than the typical pore
size, diffusion is generally described by the macroscopic
diffusion equation [1] (again in onc dimension):

oCSd GC
9L _p,. 2
5 i )

where C 1s the concentration of a molecular specics in
the fluid phase, S is the saturation of fluid i, ¢ is the
porosity, and D,; 1s the bulk (or macroscopic) diffusion
coefficient associated with diffusion in fluid phase i and
can depend on degree of saturation (here it 1s assumed
the porous medium is uniformly saturated).

Diffusion in a porous medium can be very slow,
making measurements of Dy, very time consuming. For
the case when the solid is nonconducting and the pore
space 1s fully saturated (S = 1) by a conducting fluid with
conductivity o;, the bulk diftusivity, D', ;, (the prime
denotes the case of S = 1) may be obtained by electrical
measurements of the bulk Conductivity, o;, and using

the Einstein relation, Dy; = Dﬁ =& [3], where Dy is the free

diffusivity of the ionic species in ﬂuld i being measured.
Consider, more closely, the case of a porous medium
filled with two fluids. Assume one fluid is wetting
(energetically favorable to reside near the surface) and
the second 1s non-wetting (cnergetically favorable not to
reside near the pore surface). An example could be con-
crete filled with water and air where the water preferen-
tially wets the porous concrete surface. If we allow a sim-
ple molecule to diffuse in a single fluid component, that
molecule is limited to move in a subset of the total pore
space which depends on the degree of saturation. We
define the relative diffusivity, D, = Dy,,/D'y; , where Dy
1s the bulk dlffuswny m the non -wetting or wetting
phase only (labeled i,i = 1,2).
Since Dy =Dy bl ana Dy, = D,, . Dy = Dy I Dy =255
0; Sh
The most widely known cmplrlcal relationship between
conductivity and fluid saturation S (the fraction of pore
space occupied by the designated fluid) is called Archie’s
second law [8]: o,;/0; = ¢"S" where ¢ is the porosity.
Note that when S = 1 we have Archie’s first law [8].
Since it may be viewed that changing the degree of satu-
ration 1s effectively changing the accessible pore space (or
effective porosity) it is often assumed that m = n.
However, it 1s not always clear how conductivity
depends on saturation since how and where the pore
space is filled should depend on the previous history of
the fluids ingress and on the details of the pore space
connectivity. Thercfore, simply varying the porosity in

such semiempirical relations may not be sufficient for an
accurate prediction of conductivity.

3. COMPUTER SIMULATION
3.1 Porous media

Two classes of model porous media were considered
in this paper. Such models have been used as representa-
tive of porous media like rocks [3], Portland cement paste
constituents [14] and sand [3]. In addition, the classes of
porous media studied are bicontinuous media with both
the solid phase and the pore phase percolating like real
porous media. The first model was an overlapping sphere
model consisting of 900 randomly placed digitalized
spheres. The spheres were assigned diameters of 13
(System a) and 17 (System b), in umits of lattice (or voxel)
spacing, resulting in (sce Fig. 1) porous media having
porositics of 44 percent and 17 percent respectively. The
second model was composed of nonoverlapping spheres
and had a porosity of about 43 percent with sphere diame-
ter equal to 9 (System c). All porous media formed a 1003
voxel system with periodic boundary conditions.

Fig. 1 - Digitalized porous medium built from overlapping ran-
domly placed spheres (System a). The light region represents the
solid. The porosity is 44 percent. Periodic boundary conditions
are employed on all sides.

3.2 Modeling phase separating binary mix-
tures in porous media

The modecling of phasce separating binary mixtures in
porous media 15 a great rescarch challenge. Recently,
new cellular automata methods called lattice gas and lat-
ticc Boltzmann (LB) [4] have demonstrated the capabil-
ity to model multiphase fluid flow while including
interfacial surface tension effects between the two fhuds
and between the fluid and solid interface [2]. Lattice
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Boltzmann and lattice gas algorithms are also ecasily
adaptable for parallel computers since they, in general,
only need nearest neighbor information on the lattice on
which they are defined. Such information is readily
available in a digital image of a porous mediam.

In this scction we present a brief description of the LB
method used in this study. A detailed description of the
LB method 1s found in the paper by Martys and Chen [2].
The approach of LB is to consider a typical volume cle-
ment of fluid to be composed of a collection of particles
which are represented in terms of a particle velocity distri-
bution at cach point in spacc. Macroscopic variables such
as density and fluid velocity can be obtained by taking
suitable moments of the distribution function. The

Vi relacity r]mrﬂ]f\nhnn fiinction m’(v A w ‘mﬂw‘\ cnnprcrrn'\r 1
VIO TUULIOUTNE TUHILUON, 7 ja,e ), Wikl LTI 3

labels the fluid component and the subscript 4 indicates
the velocity direction, 1s the amount of particles at node x,
time f with velocity e, where (¢ = 1,...,b). The time is
counted 1n discrete time steps, and the fluid particles can
colide with cach other as they move under applicd forces
(surface tension, applied shear, etc.). The directions of the
particle velocities are discretized reflecting the lattice and
physical symmetries.

For this study we use the D3Q19 (3 Dimensional lat-
tice with b = 19) [5] lattice where the discrete particle
veloctties, e, equal all permutations of (+1,41,0) for 1 <
a <12, (£1,0,0) for 13 £ a4 <18 and (0,0,0) for a = 19.
The units of e, are the lattice constant divided by the
time step. Macroscopic quantities such as density,
ni(x,f), and fluid velocity, u!, of each fluid component, i,
arc obtained by the following moment sums:

ni(x,t) = z n('l (x,t) (3)
and:

[
u' (X, [) — Mei (4)
n’(x, t)

Note that while the distribution function is defined
only over a discrete set of velocities, the actual macro-
scopic velocity field of the fluid is continuous.

The time evolution of the particle velocity distribu-
tion function satisfies the following LB equation:

(%)= (x.1) (5)

where Q is the collision operator representing the rate
of change of the particle distribution duc to collisions.
The collision operator is grealy simplified by use of the
single time relaxation approximation [6, 5]:

2 (xt) =~ i) -l )| (©

where nil(x,1) is the equilibrium distribution at (x,1)
and 7, is the relaxation time that controls the rate of
approach to equilibrium. The equilibrium distribution
can be represented in the following form for particles of

cach type |5]:
nf,(“’)(x) = tani(x)['l +3e,-v+ %(3%8,1 A vz)} (7

(x+ea,t+])

nis®(x ):tlgni(x)[l—%vz} (8)

where
2y el
meini(x)/ti ©)
m' 1s molecular mass of the ith component, and ¢, = 1/36
forl1<a<12andt,=1/18for 13<a<18and 1,4 = 1/3.
It has been shown that the above formalism leads to a

velocity field which is a solution of the Navier-Stokes [6]
cquation with the kinematic viscosity [2], v

1
5 Z?Cﬂi”a

u

where ¢; 1s the concentration of each component.

Y =

(10)

v=C

3.3 Interaction potential

In order to model the phase separation of fluids in
porous media an interaction between the fluids is needed

!
to drive them apart. Here a force, %(x), between the

two fluids is introduced which effectively perturbs the
cquilibrium velocity [12]:

(v (x)= riv(x) o, 22 ) (11

where v is the new velocity used in the equations (5)
and (6).

We use a simple interaction that depends on the den-
sity of cach fluid, as follows:

dp

)= )ZZG ' (x=ege,
G =2G;  |ef|=1 (12)
Gh =G, ° =2
G& =0, =i

where G is a constant which controls the strength of
interaction. The forcing term 1s then related to the den-
sity gradient of the fluid. It has been shown that the
above forcing term will drive the phase separation and
naturally produce an interfacial surface tension effect con-
sistent with the Laplace law boundary condition [2] where
at the boundary between two fluids there is a pressure
drop proportional to the local curvature of the interface.
At the point where the fluid-fluid interface meets a
solid, a contact angle, q is defined by the planes tangent to
the fluid-fluid interface and the fluid-solid interface
(Fig. 2). For 8 = 90°o neither fluid preferentially wets the
surface. When 6 = 0° or 180°, the fluids are wetting and
nonwetting respectively. To model fluids with wetting or
non-wetting propertics, with respect to the solid phase, a
fluid-solid interaction is included in equation (12):

—ni(x); Wias(x te, )ea

(13)
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Fig. 2 - A static contact angle, 0, defined where the fluid-fluid
interface mects a solid surface, is obtained as the result of the bal-
ance of interfacial surface tension forces v.

Fig. 3 - Image of phase-separated binary mixture of fluids (50/50
mixture) in porous media (system a). The grey region represents
the wetting fluid and the black region is the non-wetting fluid.

Here s is taken as one or zero depending on whether
the region is solid or pore respectively and ¥ is adjusted
so that the fluid 1s either wetting or non-wetting (positive
or negative).

In our simulations the pore space is initially saturated
with a homogeneous mixture of two fluids with a given
mass ratio. The fluids then separate until reaching an
cquilibrium state. Fig. 3 shows the final position of cach
phase in the overlapping spherc model for a
wetting/non-wetting mixturc. Here the degree of satura-
tion of each phase is equal. Note that the wetting fluid
covers the solid surface and tends to fill the smaller
pores. The non-wetting fluid lies mostly in central parts
of the pores. For the above saturation, both the wetting
and non-wetting phase form percolating networks
through the pore space. As the wetting phase saturation

B

Fig. 4 - Image of a phase-separated binary mixture of fluids (20/80
mixture by volume) in porous media (System a). The grey region
represents the wetting fluid (80 percent) and the black region is the
non-wetting fluid (20 percent). At this low non-wetting saturation
the non~wetting fluid forms disconnected blobs.

Fig. 5 ~ Image of phase separated binary mixture (50/50 mixture
by volume) in a porous medium (system a). The black and grey
regions correspond to different fluid components. Here neither
fluid preferentially wets the pore surface.

is decreased, the wetting fluid will typically form a thin
layer on the solid surface probing the surface tortuousity.
Due to numerical resolution limits, we cannot accurately
calculate the diffusivity in this low saturation regime. In
contrast, as the non-wetting phase fraction saturation
decreases, the non-wetting fluid begins to form discon-
nected regions of isolated clusters or “blobs” of non-
wetting fluid (sec Fig. 4). In this saturation regime, dif-
fusive transport in the nonwetting phase should be
consistent with percolation ideas [7].
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In Fig. 5 we show the case where neither fluid pref-
erentially wets (6 = 90°) the solid. Note the dramatic
difference in morphology of the two fluids from that
shown in Fig. 3. Here the two fluids appear to isolate
themselves into local regions. In this case, it may be
more difficult for the two fluids to form a bicontinuous
phase through the pore space since neither fluid lies
solely along the solid surface or in the middle of the
pore. After the system has relaxed to an equilibrium

position, each fluid 1s labeled and given a conductance of

either 1 or zero, while the solid phase is assigned zero
conductance. The conductivity 1s then determined in
cach separate fluid.

4. CONDUCTIVITY/DIFFUSIVITY

Determining the bulk conductivity associated with
the wetting or non-wetting fluid 1s equivalent to treating
the conducting pore space as a digitized resistor network
and solving the set of linear equations for current when a
known electrical potential is applied. To construct the
correct set of network equations, the continuity of cur-
rent across the voxel boundary (a voxel 1s a cubic cle-
ment designated as either fluid or solid) was first
imposed. To first order, this implies that the component
of the current density ] k entering a voxel surface in the
x direction 15:

2Vi.j,k_vi+1,j,k O, ikCivlik [~ ~
=2 A ) ot ey gy

Cijk ¥ Oirlik

where V; 1, 1s the clectrical potential specified on each
node labefed i,j,k Ax 1s the lattice spacing, the o, ; Is the
conductivity assigned to cach node and n is unit normal
pointing out of the voxel surface. To describe steady
state current, the net current flux through the entire
voxel surface 1s set equal to zero. i.e.:

¥y Z z
0= ik g Hu T+ s (15)

where J% ., and ] §; ., and so forth, are evaluated at
opposite faces of the voxel. The resulting set of linear
equations for V;;, was solved using a conjugate- gradi-
ent relaxation aIgorlthm [9]. The bulk conductivity is
then determined by calculating the average current < J >
for a given applicd potential difference and using Ohm’s
Law < ] > = g, AV. The relative diffusivity is then
obtained by next calculating o, for each separate fluid, 1,
and using D,; = 6,/G,,.

5. RESULTS

Fig. 6 shows the relative diffusivity in the wetting and
non-wetting phases as a function of wetting fluid satura-
tion for the nonoverlapping sphere model (System a).
Clearly there is a strong dependence of relative diffusiv-
ity on saturation. For instance, there is a significant
decrease in diffusivity (in cither phase) at or around a
wetting phase fraction of about 50%. Here D is about

]
1.00
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0.25 -
1
0.00 — ; . T ' T .
0.00 0.25 0.50 0.75 1.00
SATURATION 8 ,

Fig. 6 — Relative diffusivity curves for both the wetting (trian-
gles) and non-wetting (squares) phase in System a. The satura-
tion, S, corresponds to the wetting phase. The dashed lines cor-
respond to asymptotic approximations in text. The solid lines are
fits to equations (16) and (17).

T T
0.00 0.25 0.50 0.75 1.00
SATURATION

Fig. 7 - Relative diffusivity curves for both the wetting (trian-
gles) and non-wetting (squares) phase in System c. The satura-
tion, S, corresponds to the wetting phase.

0.25. (For the case of System ¢, D,; = 0.15 when $=0.5
sce Fig. 7). It was found that values of D,; drop off much
more quickly than the phase fraction of the fluid. Note,
for a tube geometry, D, 1s proportional to S. For the
case of the non-wetting fluid, D, goes to zero because
the non-wetting fluid becomes disconnected as 1solated
blobs of NW fluid form in the pore space when the frac-
tion of non-wetting fluid decreases. In the low satura-
tion of wetting fluid regime, the wetting fluid fills the
regions near neighboring spheres where there is more
surface arca per unit volume of pore space (hence reduc-
ing energy). As a result, the wetting fluid has difficulty
forming a connected path except for a possible thin film.
Regardless, any contribution to the conductivity due to
a presence of a very thin film would be so small as to be
negligible. Indeed, in real porous rocks, the wetting
fluid initially resides in small isolated imperfections of
the pore-solid surface.
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Four fluid saturation regimes are clearly identifiable
which correspond to endpoints of the relative diffusivity
curves. First, let us consider conduction in the wetting
fluid. In the regime of high wetting saturation we can
imagine that the non-wetting fluid begins to form little
spherical droplets as the non-wetting phase fraction
mncreases. Small perturbations to electric fields by non-
conducting spherical objects is well understood and can
be calculated using a cluster expansion approach [18].
To sccond order in volume fraction, ¢, of nonconduct-
ing solid the conductivity 1s given by ¢/c, = 1-3/2¢ +
(.588¢2. In Fig. 6 we plot this equation in the regime of
high wetting saturation. The agreement in the high satu-
ration regime is very good but as ¢ increases, higher pow-
ers of ¢ become important. Also, the morphology of the
non-wetting fluid becomes Jess well approximated by
spherical inclusions.

In the regime of low wetting saturation, the fluid
begins to probe the surface tortuousity as it fills in
regions containing the smallest pores. Hence it is not
expected that the conductivity will increase rapidly with
saturation in this regime. Consider the case of two
neighboring spheres in contact with a controlled amount
of wetting fluid. As the amount of wetting fluid is
increased it will accumulate more so in the region near
the point of contact of the spheres in order to reduce the
total surface cnergy. For such a system there 1s no con-
ducting path until the interstitial region is filled. For a
three dimensional bead pack of uniform sized spheres
constructed in such fashion, the critical saturation S, at
which a connected path forms is 1/3. In the spirit of the
Pade approximation [15] we fit the data to an empirical
polynomial function:

Dy=a(S-8)+b(S-S)2+c(S -8, (16)

where a, b and ¢ must depend on the slopes at (and) the
endpoint values of the D, curve. Unfortunately, there is
no theoretical prediction for the slope of D, in the low
wetting saturation regime. Also one would have to
accurately determine S, to complete the fit which is
beyond the scope of our calculations (also the possibility
of a thin conducting layer is ignored here).
Nevertheless, it was found that the above simple poly-
nomial function fit our data quite well. Fig. 6 includes
a fit of the above equation to the data. While the func-
tion can be adjusted to make a good fit over the given
data set, 1t is likely that a carcful fitting very ncar the
percolation threshold may be weak due to finite size
and resolution cffects.

Now consider the case of conductivity in the non-
wetting phase at low wetting phase saturation. As
expected, the conductivity decrcases as the fraction of
non-wetting fluid decreases. Given the wetting fluid
prefers to fill the interstitial regions and coat thc sold
pore surface, we may think of increasing the degree of
wetting fluid saturation as effectively reducing the
porosity somewhat akin to a grain consolidation effect
[11] (i.e. fixed spheres whose radius gradually increases).
The conductivity of such a system is well characterized
by o = ¢, where n is in the range of -1.5 to -2. Since we

are describing our conductivity in terms of saturation,
we may write, 6 = ¢15" where ¢, 1s the porosity.
Therefore, D, = 6,/c, = S" (Archic’s 2nd law) [8]. In
Fig. 6, we include a plot of the previous equation for the
non-wetting phase at low wetting saturation, with very
good agreement for n = -1.7,

As mentioned previously, as the degree of saturation
of the non-wetting phase decreases, the non-wetting
fluid will eventually form a set of disconnected blobs
such that it no longer percolates (see Fig. 4). This sce-
nario reduces to a type of percolation problem describ-
ing clusters of fluid which are limited to residing in the
pore space. Here, near the percolation threshold, the
conductivity should scale as (S - S ), where S, 1s the satu-
ration of the non-wetting phase needed for the non-
wetting blobs to percolate. In general, S, depends on the
class of pore structure studicd and should increase as the
porosity is reduced and the tortuousity of the pore space
mncreases. An accurate determination of S, for different
porous media can be difficult in that finite size cffects
need to be considered [2]. Further, if the non-wetting
fluid had been directly injected into the porous medium
instead of filling the pores by the phase separation
process a totally different fluid morphology would have
resulted with the non-wetting phase generally remaining
connected. It 1s likely the local degree of saturation
would not be uniform throughout the medium leading
to other finite-size effects. In this case, the ingress of
non-wetting fluid is more akin to an invasion percola-
tion or non-wetting fluid invasion model [7, 17].
Regardless, in System a it was found that the non-wet-
ting phase became disconnected at § = 0.27 to 0.3 (of
the non-wetting phase). It is well known that the con-
ductivity of overlapping spheres has the following scaling
behavior: ¢ ~ (¢ - ¢,)', where ¢, [10] 1s the critical poros-
ity at which the pore space becomes disconnected (no
longer percolates) and t 1s the critical exponent. For the
overlapping sphere model, ¢ = 2.4, while artifacts from
digitizing can lower ¢ to 2 [10]. Our model is not the
same as the overlapping sphere model, because the non-
wetting phase resides in a subspace of the porous region
which will deform the shape of the non-wetting blobs.
Also, restricting the non-wetting fluid to a subspace
should affect the percolation threshold. On the other
hand, the critical exponent, if in the same universality
classes (i.e. values of critical exponents typically fall into
groups called universality classes [17]) would be the same
in this model despite difference in some details. It is
found that D, at saturations near the percolation thresh-
old of the non-wetting blobs can be described by a
power law. Reasonably good fits were obtained with our
data using t = 2.2. While we cannot accurately determine
t and S, with this simulation we believe that our results
are consistent with such scaling assumptions. It remains
to be seen whether our model is in the same universality
class as the overlapping sphere model.

To fit data over the entire range of saturation where
the non-wetting fluid percolates, the following empirical
equation worked reasonably well:
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where S is the wetting phase fraction. Clearly D,; > 1 as
S—0,and D, > 0as S — §,. In general, the exponents
can be chosen to match the slopes of D; at S = 1 and
S=S,. A reasonable first choice for the exponents m and
n is the percolation exponent and the Archie’s law expo-
nent respectively.  Fig. 6 shows a fit to the data. Here
good fits was obtained for n = -1.7 and m = 2.2.

In Fig. 8 we show D, for the case where the contact
angle 0 = 90° degrees in System b. Included in Fig. & is
data for the case of completely wetting/non-wetting. At
high saturations there is a small but noticeable difference
in the initial slopes between the two cases (more so in the
wetting regime). For the fluid systems with 6 = 90°, D,
decreases much more rapidly as the saturation is reduced.
Note that in this case neither phase percolates below 50
percent saturation as the fluids form disconnected
regions. The bi-continuity of the two components is
more casily maintained in the perfect wetting/nonwetting
casc because each fluid then is limited to the pore surface
and center of the pore respectively. It is found that the
empirical polynomial function (equation (16)) fit the data
well. It is intercsting that in Archie’s original paper [&] it
was noted that the scaling behavior of the conductivity
was not strongly dependent on the fluids that filled the
pore space, even if the fluids (gas and oil) filled the pore
space in a different manner. This result is not too surpris-
ng in light of the fact that the present study shows that
the scaling behavior of conductivity at high saturations of
cither wetting or non-wetting fluid is not very different.
In other cases it is clear that Archic’s 2nd law will break
down, especially when the non-wetting phase nears its
percolation threshold and when neither fluid preferen-
tially wets a surface.

(17)

6. CONCLUSION

This paper has demonstrated that the degree of satu-
ration and the fluids wetting propertics play an important
role in controlling diffusive transport in porous media. In
general, relative diffusivity data can be described by sim-
ple third order polynomial functions over a significant
range of pore saturation. As a result relative diffusivity
curves can easily be incorporated into computer simula-
tions describing the ingress of chloride ions or the egress
of carbon dioxide in concrete. More accurate predictions
of the service life of the building materials may then be
made since most estimates of service life are based on the
case where the pore space is fully saturated (in the case of
chloride diffusion). For the case of cementitious materi-
als, the fluids modeled in this paper are somewhat ideal
since the interaction of the fluid with the solid is ignored
(i.e. dissolution, precipitation and chemical reactions).
Further the transport of chlorides should take into
account absorption n the solid.

It is also important to consider that saturation may
not always be a bulk property and, in general, depends
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Fig 8 - Relative diffusivity associated with System b for the case
of perfect wetting/non-wetting fluids (triangles) and when
neither fluid preferentially wets (0 = 90°) the surface (squares).

on depth of penetration of the fluid in the porous
medium. For instance, near the surface of a porous
medium the degree of saturation can be highly variable
depending on environmental conditions. To correctly
predict diffusive transport in porous media the modeler
must take into account weather conditions and wetting-
drying cycles.  Future research includes examination of
hysteresis cffects associated with wetting-drying cycles,
the role of capillary transport in the ingress of materials
in porous media, and the case where the molecular
specics 1s not limited to move in a single phasc.
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